Part One
  Map Reading

  Reading Topographical Maps Introduction 1. HOME

  Topographical Maps - Definition, Purpose and Categories 2. Maps

  Information in the margins of an army map 3. Marginal Information    and Symbols

  Latitude, Longitude and Other Methods to Locate Points on Topographic Maps 4. Grids

  Translating Distance on a Topographic Map to Distance on the Ground 5. Scale and Distance

  Grid North, Azimuth, Declination And Other Concepts Used To Find Direction With Topographic Maps 6. Direction

  Overlays - Used Primarily In Army Map Reading 7. Overlays

  Aerial Photographs - Supplements And Substitutes For Topographic Maps 8. Aerial Photographs

 Part Two
  Land Navigation

  Using Compass, GPS, Sun, Shadows, and Stars in Land Navigation 9. Navigation Equipment    and Methods

  Reading The Shape Of The Land In Topographic Maps 10. Elevation and Relief

  Orienting and Navigating With Topographic Maps 11. Terrain Association

  Mounted Land Navigating With Motorized Vehicles 12. Mounted Land    Navigation

  Land Navigation In Different Types of Terrain 13. Navigation in    Different Types of    Terrain

  Sketching Topographic Maps A. Field Sketching

  Folding Topographic Maps B. Map Folding     Techniques

  Units of Measure and Conversion Factors Used in Reading Topographic Maps C. Units of Measure and      Conversion Factors

  Units of Measure and Conversion Factors Used in Reading Topographic Maps D. Joint Operations      Graphics

  US Army Training Material for Map Reading and Land Navigation E. Exportable Training      Material

  Orienteering F. Orienteering

  US Army M2 Compass G. M2 Compass

  Additional Aids such as Night Vision Goggles and Global Positioning System or GPS H. Additional Aids      (GPS, Night Vision)

  Global Positioning System -  GPS J. Global Positioning      System - GPs


Outdoor Gear Store Outdoor Gear Store

Links to other sites LINKS

Link to us LINK To Us




The ability to accurately determine position location has always been a major problem for soldiers. However, the global positioning system has solved that problem. Soldiers will now be able to determine their position accurately to within 10 meters.


The GPS is a satellite-based, radio navigational system. It consists of a constellation with 24 active satellites that interfaces with a ground-, air-, or sea-based receiver. Each satellite transmits data that enables the GPS receiver to provide precise position and time to the user. The GPS receivers come in several configurations, hand-held, vehicular-mounted, aircraft-mounted, and watercraft-mounted.


The GPS is based on satellite ranging. It figures the users’ position on earth by measuring the distance from a group of satellites in space to the users’ location. For accurate three-dimensional data, the receiver must track four or more satellites. Most GPS receivers provide the user with the number of satellites that it is tracking, and whether or not the signals are good. Some receivers can be manually switched to track only three satellites if the user knows his altitude. This method provides the user with accurate data much faster than that provided by tracking four or more satellites. Each type receiver has a number of mode keys that have a variety of functions. To better understand how the GPS receiver operates, refer to the operators' manual.


The GPS provides worldwide, 24-hour, all-weather, day or night coverage when the satellite constellation is complete. The GPS can locate the position of the user accurately to within 21 meters—95 percent of the time. However, the GPS has been known to accurately locate the position of the user within 8 to 10 meters. It can determine the distance and direction from the user to a programmed location or the distance between two programmed locations called way points. It provides exact date and time for the time zone in which the user is located. The data supplied by the GPS is helpful in performing several techniques, procedures, and missions that require soldiers to know their exact location. Some examples are:

  • Sighting.

  • Surveying.

  • Sensor or minefield emplacement.

  • Forward observing.

  • Close air support.

  • Route planning and execution.

  • Amphibious operations.

  • Artillery and mortar emplacement.

  • Fire support planning.


A constellation of 24 satellites broadcasts precise signals for use by navigational sets. The satellites are arranged in six rings that orbit the earth twice each day. The GPS navigational signals are similar to light rays, so anything that blocks the light will reduce or block the effectiveness of the signals. The more unobstructed the view of the sky, the better the system performs.


All GPS receivers have primarily the same function, but the input and control keys vary between the different receivers. The GPS can reference and format position coordinates in any of the following systems:

  • Degrees, Minutes, Seconds (DMS): Latitude/longitude-based system with position expressed in degrees, minutes, and seconds.

  • Degrees, Minutes (DM): Latitude/longitude-based system with position expressed in degrees and minutes.

  • Universal Traverse Mercator (UTM): Grid zone system with the northing and easting position expressed in meters.

  • Military Grid Reference System (MGRS): Grid zone/grid square system with coordinates of position expressed in meters.

The following is a list of land navigation subjects from other sections of this manual in which GPS can be used to assist soldiers in navigating and map reading:

a.   Grid Coordinates (Chapter 4). GPS makes determining a 4-, 6-, 8-, and 10-digit grid coordinate of a location easy. On most GPS receivers, the position mode will give the user a 10-digit grid coordinate to their present location.

b.   Distance (Chapter 5) and Direction (Chapter 6). The mode for determining distance and direction depends on the GPS receiver being used. One thing the different types of receivers have in common is that to determine direction and distance, the user must enter at least one way point (WPT). When the receiver measures direction and distance from the present location or from way point to way point, the distance is measured in straight line only. Distance can be measured in miles, yards, feet, kilometers, meters, or nautical knots or feet. For determining direction, the user can select degrees, mils, or rads. Depending on the receiver, the user can select true north, magnetic north, or grid north.

c.   Navigational Equipment and Methods (Chapter 9). Unlike the compass, the GPS receiver when set on navigation mode (NAV) will guide the user to a selected way point by actually telling the user how far left or right the user has drifted from the desired azimuth. With this option, the user can take the most expeditious route possible, moving around an obstacle or area without replotting and reorienting.

d.   Mounted Land Navigation (Chapter 12). While in the NAV mode, the user can navigate to a way point using steering and distance, and the receiver will tell the user how far he has yet to travel, and at the current speed, how long it will take to get to the way point.




Map Reading and Land Navigation Buy the book this website is based on: Map Reading and Land Navigation

This website is based on the US Army Field Manual: "Map Reading and Land Navigation" Buy a copy from to take with you out in the field.


Book Review - Be Expert with Map and Compass

One of the best ways to learn and become proficient in any subject is to find a way to make a game or sport of it. That's exactly what orienteering does! Orienteering began to develop almost 100 years ago in the Scandinavian countries as a fun and effective method for military training in land navigation. Bjorn Kjellstrom was closely involved with the early development of orienteering, and he is the person who introduced the sport to North America. He, along with his brother Alvar, and a friend named Gunnar Tillander, invented the modern orienteering compass. They manufactured and marketed it as the Silva Protractor compass. This compass, along with Bjorn's book Be Expert with Map and Compass, made it much easier for anyone to learn how to use a map and compass.

This book has become the most widely read classic on the subject of map reading, compass use, and orienteering. Over 500,000 copies have been sold in the english language editions alone. There have been very successful editions published in French, Italian, and other languages as well. It is a short (just over 200 pages), easy to read, enjoyable book that can help you to have fun while you learn the subject quickly and effectively.

The book is organized into four main parts, plus a short, useful introduction. Part 1 covers having fun with maps alone. Then, Part 2 covers having fun with a compass alone. Part 3 puts it together and shows you how to have fun with a map and compass together. This section also introduces the game or sport of orienteering. Part 4 covers competitive orienteering for those who would like to compete with others in the sport.

A reproduction of a segment of an actual topographic map is included as a fold-out in the back of the book. It is used together with the "how-to" instructions the book provides. For example, one of the exercises in Part 3 is an imaginary orienteering "hike" that uses the sample map.

If you would like to have one of the best books available on map reading and using a compass, Be Expert with Map and Compass is hard to beat. You can buy a copy from today.

Read a book review of Agincourt

Boat Navigation For The Rest of Us
  Boat Navigation For The Rest of Us

Basic Coastal Navigation
  Basic Coastal Navigation